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Abstract

A theoretical analysis that describes the change in electric properties of polymeric composites, filled with conductive aggregates, during

organic solvent absorption processes is presented in this work. This methodology takes into account the moving boundaries typical of this

phenomena; requiring simple numerical procedures to be solved. The results show no numerical instabilities during the calculation process.

The obtained results correlate very close to the available experimental data; therefore could be very useful for chemical sensor design. q 2002

Published by Elsevier Science Ltd.
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1. Introduction

The relationship between electrical resistivity and the

volumetric fraction of conductive aggregates into a

polymeric conductor composite has been widely analyzed

both theoretically and empirically [1 – 4], being the

percolation theory the most accepted model to describe

this phenomenon [5–12]. However, this relationship has

always been studied on homogeneous composites, where

distribution of the conductive fraction inside the composite

is uniform. There are, nevertheless, a wide range of

phenomena where the conductive fraction varies signifi-

cantly with position, especially when gaseous or liquid

solvents are being absorbed by the polymer matrix. This

phenomenon has an important application in designing

chemical sensors and artificial odor detection systems. In

these devises the solvent presence is detected when electric

resistance of the composite changes due to the absorption of

the solvent by the polymeric matrix. In previous works

[13–15] a number of authors have been found that when a

sensor, tailored with a polymer composite chemically

compatible with the solvent to be monitored, is brought in

contact with this solvent; a variation on the electric current

circulating through the sensor is observed and, at the same

time, an increase in volume occurred. This sample swelling

occurs because the composite matrix absorbs the solvent,

and consequently the volumetric fraction of the conductive

aggregates changes; as a result the electric resistivity of the

composite also changes [13–15], diminishing, if the solvent

is a good electric conductor, or increasing, if it is a dielectric

solvent. It is important to note that in this process the

electric resistivity varies across the transversal section of the

composite, because of the solvent diffusion. A model that

describes such a phenomenon is presented in this work, for

polymeric composites filled with conductive particles. The

aim of the model is to connect the percolation theory with

the solvent diffusion equation in amorphous polymers. Also,

it must be mentioned that in this first paper we have

restricted the analysis to dielectric solvents and polymers;

however, in the second paper we generalize this approach to

any arbitrary components. Finally, it is important to stress

out that to our knowledge no similar analysis has been

previously reported in the literature.

2. Analysis

In order to exemplify the method, an axisymmetric

geometry was selected to study the composite behavior.
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Main reason for this geometry selection is that modern

sensors commonly have such configuration [13–15]. A

simplified typical electric circuit arrangement, for the

mentioned sample, is presented in Fig. 1. On this

configuration, the solvent diffusion process into the

composite gradually changes its electric conductivity,

following the solvent concentration profile along the sample

radius over a time period. In order to model the previous

situation, the following hypotheses were considered:

(i) Solvent diffusion process on the sample is one-

dimensional, taking place only along the radial

direction (axial diffusion is neglected).

(ii) The polymeric matrix and the organic solvents are

dielectric materials.

(iii) Solvents are absorbed only by the polymeric matrix,

and not by the conductive aggregates.

(iv) Solvent diffusion into the composite follows Fick’s law

(this is especially true on elastomeric matrix compo-

sites and copolymers).

(v) The coefficient of convective transfer at the liquid–

solid interface is infinite.

Using those hypotheses it is possible to predict, at

constant voltage, the variation of the electric current on the

composite during the solvent diffusion process. First of all,

Ohm’s law can be written as

IðtÞ ¼
ðaðtÞ

0

E

rmðtÞl
dAðtÞ ð1Þ

where I(t ) and rm(t ) are the instantaneous electric current

on the sample and local composite resistivity. A(t ), a(t ) and

l are the transversal section, external radius and longitude of

the sample. Finally E is the applied voltage, which remains

constant.

Eq. (1) can be normalized as

IðtÞ

I0

¼
1

r2
0

ðaðtÞ

0

rm0

rmðtÞ
rðtÞdr ð2Þ

where r is the radial coordinate and variables indexed with

zero represent the state of the composite before the solvent

gets in touch with it. In order to calculate the electric

resistivity, it is necessary to know its relationship with the

solvent volumetric fraction. This can be done by modifying

a model proposed by McLachlang [11], which describes the

conductive composite electric resistance change as a

function of its conductive and dielectric volumetric

fractions. This equation, which is known as the generalized

effective media (GEM) model, integrates two morphology

parameters: fC (the critical percolative value of the

conductive fraction) and q (an experimental exponent).

Previous equation can be written as

ð1 2 f Þðr
21=q
L 2 r

21=q
m Þ

r
21=q
L þ fRr

21=q
m

þ
f ðr

21=q
H 2 r

21=q
m Þ

r
21=q
H þ fRr

21=q
m

¼ 0 ð3Þ

where rH, rL and rm are the resistivities of the high and low

resistive components and the composite resistivity, respect-

ively, f is the conductive fraction and fR is given by the

following expression:

fR ¼
1 2 fC

fC
ð4Þ

Solving Eq. (3) for rm, we have

rm ¼ {ð1=2Þ½B ^ ðB2 þ 4CÞ1=2�}2q ð5Þ

Nomenclature

I(t ) current intensity as a function of time

E applied constant voltage

A(t ) transversal section area of the composite

sample

l longitude of the composite sample

a(t ) external radius of the composite sample

r radial coordinate

r(t ) local resistivity of the composite

rH resistivity of the dielectric component

rL resistivity of the conductive component

q experimental percolation exponent

f volumetric fraction of the conductive com-

ponent

fC critical percolation value of f

fR ð1 2 fCÞ=fC
fP polymer volumetric fraction

fS absorbed solvent volumetric fraction

fSmax maximum absorbed solvent volumetric frac-

tion

D diffusion constant

J0 and J1 zero and first Bessel functions

an roots Bessel factor

VT(t ) total volume of the sample

Fig. 1. Schematic of the solvent diffusion process.
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where

B ¼ f21
R ½ðffR þ f 2 1Þr

21=q
H 2 ðffR þ f 2 fRÞr

21=q
L �;

C ¼ f21
R ðrLrHÞ

21=q

ð6Þ

The positive sign of Eq. (5) is used to describe the behavior

of a composite with larger conductive fraction than that of

the percolation one, while the negative one is used for those

with a smaller fraction [11,12]. Therefore, in this work we

will use only the positive sign of the previous equation.

It is important to mention that the GEM equation was

deduced for a composite of only two components. However,

we can use it if considering the following approximation;

since the polymer matrix and organic solvents are both

dielectrics with a resistivity of the same order of magnitude

and substantially different from that of the conductive

fraction, we may treat both phases (polymer and solvent) as

an unique phase. Therefore, the sum of the polymeric matrix

fraction, fP, plus the solvent fraction, fS, will be named as the

non-conductive fraction in Eqs. (5) and (6). This last

approximation is possible because the resistivity is one of

the physical magnitudes that present the broader range of

values. Indeed, the resistivity of common organic sub-

stances varies typically between 1016 and 108 V cm, while

the conductive aggregates have restitivities between 1021

and 1027 V cm.

To evaluate f ðr; tÞ on each location as function of time,

the following relation was considered

f ðr; tÞ ¼ 1 2 fPðr; tÞ2 fSðr; tÞ

¼ 1 2 fPðr; 0Þ
VTðr; 0Þ

VTðr; tÞ
2 fSðr; tÞ

f ðr; tÞ ¼ 1 2 fPðr; 0Þ½1 2 fSðr; tÞ�2 fSðr; tÞ

ð7Þ

where VTðr; tÞ is the local volume as a function of time.

In order to determine the evolution of the solvent

volumetric fraction fSðr; tÞ it is possible to use Fick’s law

[17].

›fSðr; tÞ

›t
¼ D72fSðr; tÞ þ 7D·7fSðr; tÞ ð8Þ

where D is the diffusion coefficient related to the volumetric

fraction. This last parameter, in the case of polymers, is

normally concentration dependent for large swelling levels.

The treatment of variable D is mainly possible in closed

form only if the variation of D with fS is known a priori, and

if the variation can be expressed analytically [17]. There-

fore, as a first approximation, in the present study we

consider D as a constant. Moreover, taking into account the

hypothesis number (i), this last expression may be written as

›fSðr; tÞ

›t
¼

1

r

›

›r
rD

›fSðr; tÞ

›r

� �
ð9Þ

To solve this equation, the following initial and boundary

conditions apply

fSðr; 0Þ ¼ 0; 0 # r # að0Þ

fSðr; tÞ ¼ fSmax; r ¼ aðtÞ; t $ 0

ð10Þ

where fSmax is the maximal solvent volumetric fraction that

the composite is able to absorb. There are two solutions of

Eq. (9), subjected to conditions (10); the first one is valid for

large times, and the second one for short times [16]. The first

one has the following form

fSðr; tÞ ¼ 1 2
2

aðtÞ

X1
n¼1

expð2Da2
ntÞJ0½rnan�

anJ1½aðtÞan�

 !
fSmax ð11Þ

where J0 and J1 are the first class Bessel functions, of zero

and first order, respectively, and an are the positive roots of

J0½aðtÞan�: Whereas, the second one has the next structure:

fSðr; tÞ ¼

 ffiffiffiffiffiffiffi
aðtÞ=r

p
erfc

aðtÞ2 r

2
ffiffiffiffi
Dt

p þ ½aðtÞ2 r�

£

ffiffiffiffiffiffiffiffiffiffiffiffi
DtaðtÞ

4aðtÞr3=2

s
ierfc

aðtÞ

2
ffiffiffiffi
Dt

p þ · · ·

!
fSmax

ð12Þ

Using the previous equations it is possible to calculate

f ðr; tÞ; using the value of fSðr; tÞ in Eq. (7). Finally, to

evaluate the increment of the filament external radius the

following relation was deduced:

a2ðtÞ ¼ a2ð0Þ þ 2
ðaðtÞ

0
fSðr; tÞr dr ð13Þ

It is evident that it is not possible to get an explicit

expression for a(t ) using Eqs. (11)–(13), however, it is

possible to evaluate this parameter employing a numerical

method.

3. Algorithm for the numerical solution

In order to numerically evaluate Eqs. (11)–(13), the

sample radius was divided into a number of segments,

n . 20 (bi-dimensional rings), as shown in Fig. 2. Using

Fig. 2. Schematic of circuit for sensor testing.

A. Carrillo et al. / Polymer 43 (2002) 6307–6313 6309



this partition, Eq. (13) can be expressed as

0 ¼ a2ð0Þ2 a2ðtÞ þ
Xn

i¼1

fSðr
2
i 2 r2

i21Þ;

rn ¼ aðtÞ and r0 ¼ 0

ð14Þ

on which a(t ) is calculated by using a Newton–Raphson

method, where Eq. (14) is linked to Eq. (11) for large times,

or to Eq. (12) for short ones. Once that a(t ) was obtained

with appropriated precision, the conductive volumetric

fraction f ðtÞi at each radius ri, is evaluated using the same

previous Eq. (11) or (12). Electric resistivity at each

location, ri, is then calculated with the previous value and

Eq. (5). The electric current intensity evolution, through the

sample, can be evaluated with the following equation

IðtÞ

I0

¼
1

aðtÞ20

Xn

i¼1

r0

riðtÞ

� �
ðr2

i 2 r2
i21Þ

rn ¼ aðtÞ and r0 ¼ 0

ð15Þ

4. Results

In order to illustrate the use of this algorithm,

experimental data from Márquez et al. [14] and Carrillo

[15], was used. This data that is reported in Table 1, and

correspond to a polymer composite with a carbon particles

concentration larger than the critical percolation value,

which represent the conductive fraction of the composite.

This composite was elaborated using polybutadiene (PB) as

the polymer matrix. In Fig. 3, electric resistance evolution

when prepared using different volumetric fractions of

carbon particles is shown. It can be noticed that the

composite has a percolation composition of around 0.14 (v/

v) of carbon particles. The parameters of Eqs. (4)–(6) were

calculated using this correlation (see Table 1). Sub-

sequently, concentration profiles were evaluated for five

different hypothetical solvents, as a function of the radial

coordinate at different times. Calculations were performed

on MS Excel spreadsheet, on a Pentium III based PC. The

data were evaluated only for large times (corresponding to

the validity range of Eq. (11)). Figs. 4 and 5 show the

obtained results for a two particular solvents; one with a

diffusion coefficient of D ¼ 1 £ 1026 cm2/s and another

with a D ¼ 9 £ 1026 cm2/s. These values were chosen

Table 1

Experimental data from Márquez et al. [14] and Carrillo [15]

Composite characteristics

Resistivity of the dielectric component (Polybutadiene

Solprene 200) (rH)

3.15 £ 1015 V cm

Resistivity of the conductive component (carbon

particles) (rL)

8.7 £ 1022 V cm

Experimental percolation exponent (q ) 3

Critical percolation value ( fC) 0.14

Sample characteristics

Cross-sectional area (A0) 6.514 £ 1022 cm2

Length (L ) 30.0 cm

Test conditions

Voltage (E ) 0–5 V

Temperature (T ) 25 ^ 1 8C

Fig. 3. Evolution of the resistivity of a PB/CB composite at different

volume fractions of PB.

Fig. 4. Solvent diffusion with a D ¼ 1 £ 1026 cm2=s:

Fig. 5. Solvent diffusion with a D ¼ 9 £ 1026 cm2=s:

A. Carrillo et al. / Polymer 43 (2002) 6307–63136310



because they are very similar to actual values of

hydrocarbons in an elastomer, as the PB [14,15]. The first

curve in each graph corresponds to the first minute of

contact with this solvent, while the subsequent ones are five

minutes apart of each other. It is relevant to notice in these

curves, how the external radius a(t ) increases as a function

of time, as dictated by Eq. (13). It can also be noticed that

the line corresponding to the first minute presents some

irregularities, due to the selection of the particular solution

for the diffusion equation (Eq. (11)). Indeed, when both

solutions (Eqs. (11) and (12)) are used these irregularities

are vanished.

Fig. 6 shows the relationship between the instantaneous

radii and the initial one, for a series of different solvents.

First of all, it is interesting to observe that on the studied

case the moving boundary exhibits a very large variation, as

the radii increases more than 40%. As previously men-

tioned, for large swelling levels the diffusion coefficient

may became concentration dependent, however, the results

obtained with a constant coefficient correlate satisfactorily

with the experimentally observed data [14,15].

Fig. 7 shows how the electric current curve falls with the

solvent contact time, for each different solvent. It can be

noticed that, in general, the current diminishes rapidly with

time, at the exception of the first solvent, which is in good

agreement with experimental observations [4,7,10,14,15].

As expected, the current intensity drops faster for solvents

that have larger diffusion coefficients on the composite than

for those that have smaller ones. From a practical view, a

more interesting fact is that; the rate at which the current

intensity drops is different for different composites. Indeed,

in previous works has been shown [14,15] that current

intensity drop is significantly faster for PB than for SBR

composites. It is important to mention that, by means of the

evaluation of the difference between such drop rates, it is

possible to identify what type of solvent is diffusing on the

sensor’s composites, in a relative inexpensive way.

Moreover, it is evident that the swelling curves of Fig. 6

could fit in a master curve, if one changes the contact time

(t ) as the abscise variable by a dimensionless one as

Dt=aðtÞ2: For example, the result of this change is shown in

Fig. 8, where one can see how they perfectly fit to a master

curve. However, it is less evident that the curves

corresponding to the current intensity also fit to a master

curve. Fig. 9 shows these curves plotted versus the same last

variable Dt=aðtÞ2: It is amazing how they also fit to a perfect

master curve.

Fig. 6. Evolution of the normalized radii for different solvents.

Fig. 7. Falling of the current intensity with the solvent contact time.

Fig. 8. Swelling master curve obtained by plotting the normalized radii

against Dt=aðtÞ2:

Fig. 9. Master curve obtained by plotting the current intensity against

Dt=aðtÞ2:
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5. Discussion

As previously mentioned, the present analysis utilizes a

number of approximations needed to obtain the results in a

straightforward way. One of the more delicate approxi-

mations is the consideration of diffusion coefficient D as a

constant, when the radius increases until 40%, which means

that the increase in volume is twice with a liquid volume

fraction of 0.5. Generally, for such high concentration, D is

concentration dependent. However, it must be noted that the

larger decrease in composite conductivity takes place at the

first moments of the swelling, where the diffusion

coefficient could be considered as a constant. Additionally,

it is very difficult to find experimental data for this

parameter when it becomes concentration dependent,

therefore the use of such an analysis would become very

limited for sensor designers. Indeed, as previously men-

tioned the treatment of variable D is mainly possible, in

closed form, only if the variation of D with concentration is

known a priori, and if the variation can be expressed

analytically [17]. This last point is very important, because

even though, a designer may find an analytical relation for

DðcÞ; for a particular solvent in a polymer, it may change

significantly for the doped composites of the same polymer.

Moreover, we are currently developing a method to take into

account this dependency. The method use the model of

Philip [18,19], however, the calculations involved in this

last method are significantly more complicated than in the

present one, and the precision is almost the same, specially

at the first stages of the swelling.

Another point to be signaled, in this analysis, is the use of

the solvent volumetric fraction fS instead of the concen-

tration C. We consider that the employ of the first

parameter, for the present study, is better because it may

be measured, in the actual experimental tests, in an easier

and more precise way than the second one. For example, to

measure the concentration it is necessary to weight

continuously the sample, and as a consequence to interfere

with the diffusion process. However, it is possible to

measure the increase of the solvent volumetric fraction into

the sample, by photographic means, with no interference

during the test. Of course, it is possible to calculate the

concentration from the volumetric fraction, however, in a

number of polymers the relation between the solvent

volumetric fraction and its actual concentration evolves

with the swelling level, therefore the calculation of the

concentration in basis of the volumetric fraction introduces

a new uncertainty to the study of the phenomena, that is

dictated mainly by the increase of dielectric volume into the

sample.

Finally, it is important to mention that this methodology

may allow a more precise sensor design, based only on

easily obtainable laboratory data. Particularly, it provides a

possibility to use complementary data, as for example the

rate with which the current intensity falls, for the

identification of a number of substances.

6. Conclusion

A methodology that describes the change in electric

properties of polymeric composites, during solvent diffusion

processes, is presented in this work. The equations that

result from this methodology require simple numerical

procedures to be solved, and no numerical instability was

observed during the process. The obtained results correlate

very close the available experimental data, and therefore

could be very useful for chemical sensor design.
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Appendix A

In order to solve Eq. (3) for rm, the next procedure was

followed

ð1 2 f Þðr
21=q
L 2 r

21=q
m Þ

r
21=q
L þ fRr

21=q
m

þ
f ðr

21=q
H 2 r

21=q
m Þ

r
21=q
H þ fRr

21=q
m

¼ 0 ð3Þ

Multiplying by the denominators both members we have:

ð1 2 f Þðr
21=q
L 2 r21=q

m Þðr
21=q
H þ fRr

21=q
m Þ þ f ðr

21=q
H 2 r21=q

m Þ

� ðr
21=q
L þ fRr

21=q
m Þ ¼ 0

Arranging:

r22=q
m 2 ½ffR þ f 2 1Þr

21=q
H 2 ðffR þ f 2 fRÞr

21=q
L � f21

R r21=q
m

2 r
21=q
L r

21=q
H f21

R ¼ 0

The previous equation is a quadratic expression, which is

straightforward solved by taking into account the par-

ameters B and C defined by Eq. (6).
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